

CLOSED LOOP POST-CONSUMER TEXTILE RECYCLING

Dr. Jens Oelerich

Sustainable & Functional Textiles, School of Creative Technology, Saxion University of Applied Sciences, Enschede, The Netherlands.

REACT Webinar 4 June 2021

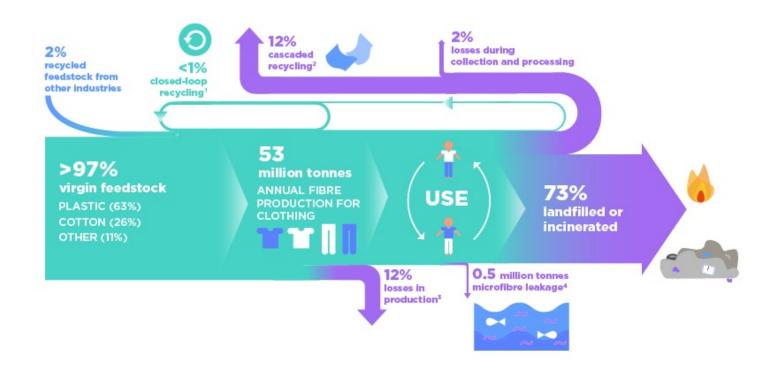
- Established in 1875
- University of Applied Sciences (UAS)
- 27.505 students (2019-2020)
- 2.812 employees
- Three locations:
 - Enschede
 - Deventer
 - Apeldoorn
- 14 Schools (Academies)

Research group Sustainable & Functional Textiles Applied Science in Textiles

Research group leader: Dr. Jan Mahy

Coordinator of the research line Sustainable Textiles: Dr. Jens Oelerich

Expertise: Textile Technology, Circular Textiles, Prototyping, Sustainable Chemistry, Fashion Design

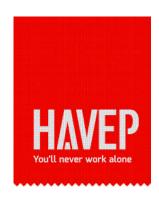


Textile fiber production

Worldwide textile fiber production in 2018 ~111 Mt

- 79 Mt synthetic fibers
- 32 Mt natural fibers (26 Mt cotton fibers)

¹ Recycling of clothing into the same or similar quality applications


² Recycling of clothing into other, lower-value applications such as insulation material, wiping cloths, or mattress stuffing

³ Includes factory offcuts and overstock liquidation

⁴ Plastic microfibres shed through the washing of all textiles released into the ocean Source: Circular Fibres initiative analysis – for details see Appendix B of the full report

Design for recycling

Recycling options

Mechanical recycling

Chemical recycling

General challenges

Feedstock

- Changing and heterogeneous feedstocks
- Elastomers
- Intensive/dark colors

Technology

Upscaling

Economics

- Investment costs
- Costs for new cellulose solvents (Ionic liquids)
- Low virgin raw material prize

Market/Consumer

Reluctant buying attitude

Possible solutions

Feedstock

- Sorting
 - Automatization
 - Categorization
 - Reliable purity of materials
- Design for recycling

http://www.valvan.com/uncategorized/introducing-the-fibersort/

Technology

- R&D, feasibility studies
- Collaborations within value chains

Economics

- Investments (Green Deal)
- Regulations (EPR, etc.)

Market/Consumer

• Transparency (product passport, tracers...), increasing awareness

Recycled fiber properties

Mechanical recycling

- Cotton like appearance and properties
- Reduced fiber length
- Colored

www.purewastetextiles.com

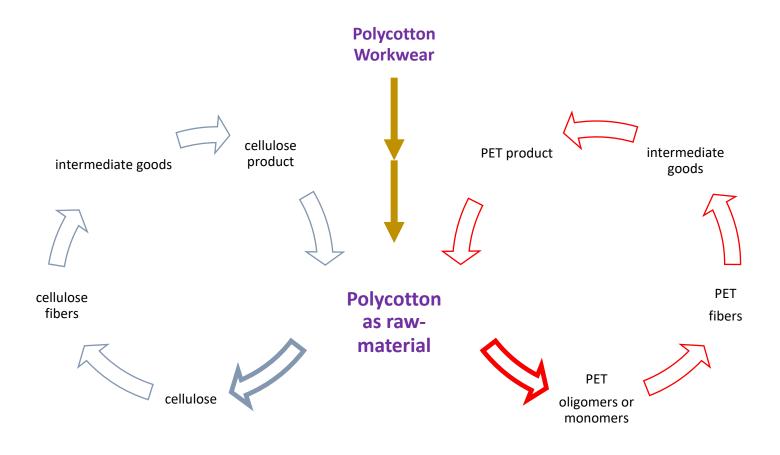
Chemical recycling

- Lyocell fibers (mechanically strong, high-end, higher costs)
- Viscose fibers (very flexible process, mechanically weaker, industrial standard, lower costs)
- Carbamate fibers (mechanically weaker, rarely used technology for garments)
- Fibers from Ionic liquids (mechanically strong, rarely used technology, higher costs)

Workwear fabrics

Cotton

Multifiber blends



Closed loop workwear recycling

Cotton recycling

Polyester recycling

Raak-MKB Breakthrough in polycotton recycling

This research is financed by Regieorgaan SIA part of the Dutch organization for scientific research (NWO)

Cellulose recycling

Polyester recycling

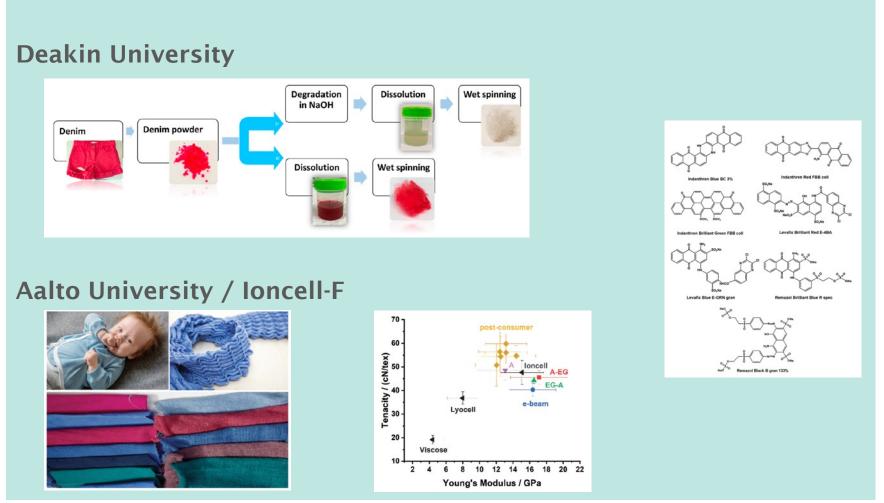
1) Waste collection and sorting 2) Unravelling and/or milling 3) Removal of polyester and other impurities 4) Discolouration of remaining textile waste 5) Adjustment of the degree of polymerization (DP) 6) Spinning of RCFs 7) Yarn production 8) Fabric production 9) Fabric finishing

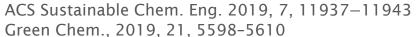
10) Garment tailoring

Chemical cotton recycling

SaXcell® workwear trousers

100% chemically recycled waste textiles




In collaboration with Havep BV

Colored chemically recycled fibers

Cotton workwear material cycle

Project partners:

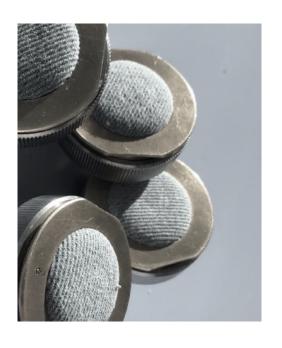
Denim from 100% PCR fibers

Sustainable denim with Post-Consumer-Recycled (PCR) fibers Up to 40% mechanically recycled cotton

100% PCR fibers

mechanically recycled fibers

chemically recycled fibers


Prototypes

Saxion Circular Textiles Lab

