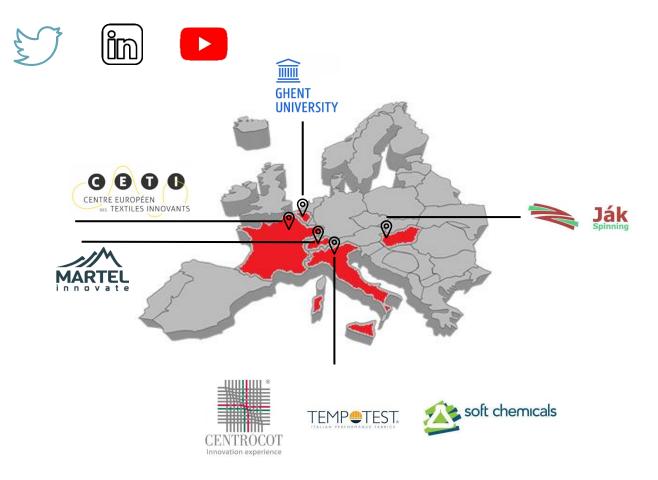


REACT A TOOL FOR IMPURITIES PROBLEMS IN OUTDOOR SECTOR RECYCLING

Piga Daniele

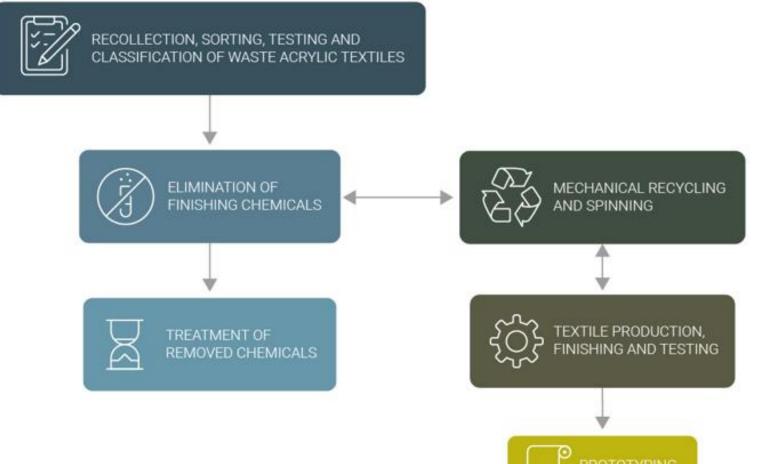
daniele.piga@centrocot.it

16/09/2022, Dornbirn Global Fiber Congress 2022


REACT – GENERAL PROJECT INFORMATION

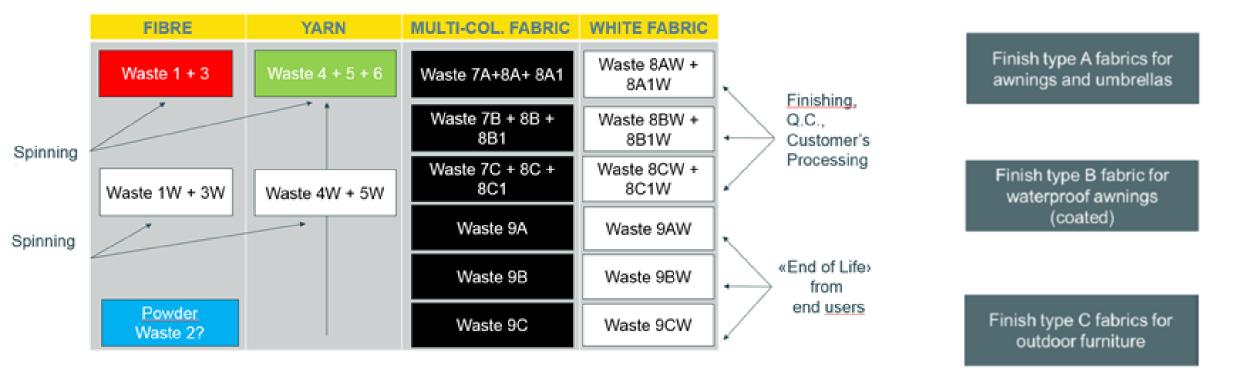
H2020-SC5-2018-2019-2020: Methods to remove hazardous substances and contaminants from secondary raw materials

- 36 months duration
 (June 2019 May 2022 → September 2022)
- **Consortium:** 7 partners for 5 EU countries



IT IS ESTIMATED THAT EVERY YEAR, IN EUROPE, ABOUT 7'700 TONNES OF ACRYLIC TEXTILE WASTE ARE DISPOSED OF BY LANDFILL OR INCINERATION

- to reach a removal rate of 90-95% of chemicals/substances that prevent their recycling
- to treat up to 99% of all sewage impurities obtained from removal steps
- to obtain a final textile product with yarn coming from 100% recycled fibre, mixing regenerated fibres from card, winding opened thread and waste material collected fibre, each up to 33%
- to re-use the acrylic textiles as raw material for other production cycles, to reach 30 % of waste prevented from disposal (3.600 tonnes total) for the outdoor sector (awnings and furnishing)

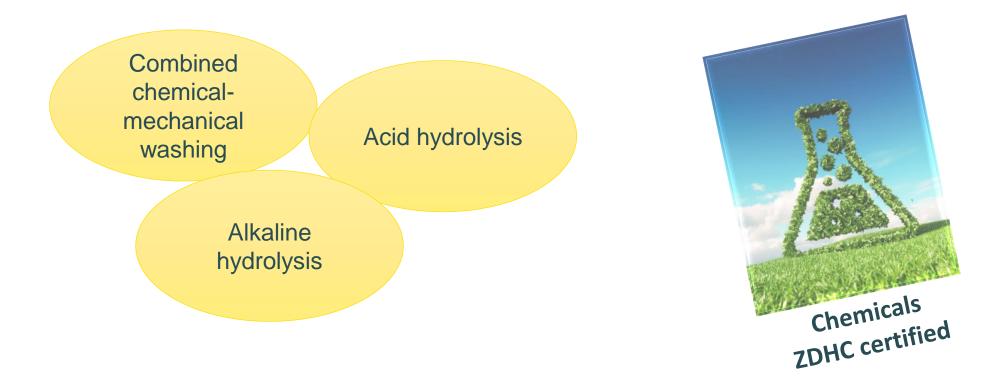


REACT: COLLECTION AND SORTING

Sorted plastic

- Finishing B
- Finishing C
- Post-consumer fabrics
 - Finishing A
 - Finishing B
 - Finishing C

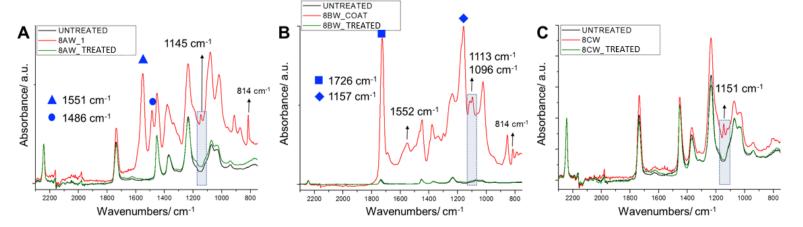
Fast analysis (~ 1 minute) Non-destructive


Air

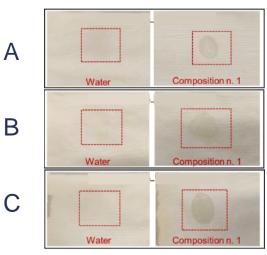
nozzles

REACT: REMOVING RESULTS

How to remove hazardous chemicals from acrylic fabrics: chemical approach

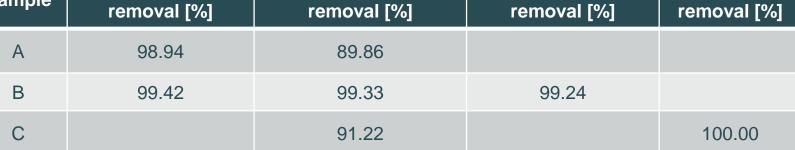

To remove resins **chemical attacks** were investigated, involving wetting and dispersing agents, studying the pH influence.

Sample


Termosetting resin

- 1							

REACT: REMOVING RESULTS


Water and oil repellency

oil repellency according with AATCC 124-2018

Initial oil repellency degree 5

Water-repellent resin

Waterproof coating

Softener

Parameters

TSS

BOD₅

COD

	100
Ultrafiltration	Sec. 1

Carlo Statement Carlos	
and the second sec	

Analytical

value [mg/l]

76

7993

56300

REACT: WASTEWATER TREATMENT

Sludge impurities

Parameters	Analytical value [mg/l]
TSS	< 10
BOD ₅	6320
COD	27100

0

99,3%

COD after 20 days

REACT: SPINNING

Two approaches: Open-end and Ring spinning

Performance yarns: unfinished fabrics > finished fabrics > EoL fabrics

Increased properties: mixing recycled fibres with raw materials at least 30%

		Finished fabrics 60% + raw acrylic 40%	Finished fabrics 70% + raw acrylic 30%	Finished fabrics 50 % + unfinished fabrics 50%
Tanaila	Average cN	821	734	726
Tensile strength	Min cN	699	510	637
Stiength	Max cN	990	876	817
Breaking elongation	%	21.7	20.9	20.9
C.V. strength	%	5.4	8.2	5.0
C.V. breaking elongation	%	4.8	9.0	4.0
Average breaking toughness	cN/tex	13.1	25.5	12.6

100% recycled yarns is possible!

_____.

Objective

To evaluate the environmental impact of an outdoor awning made with virgin acrylic textile compared to the same product with a partially recycled textile.

Two product systems developed:

- 1. Virgin acrylic awning: solution dyed acrylic textile made of virgin fibre.
- 2. Recycled acrylic awning: the core processes of the textile production account for the mechanical recycling process (from pre-consumer waste) including a chemical removal treatment. The final composition of the acrylic fabric is: 70% recycled, 30% virgin.

Cradle-to-grave study: raw material supply, fabric manufacturing, awning assembly, distribution, use, EoL (all transports included)

LIFE CYCLE ASSESSMENT RESULTS

Outcome from the comparison between the two fabric (1 kg). Cradle-to-gate results.

INDICATOR	COMPARISON			
Climate change				
Ozone depletion				
Human tox, non-cancer				
Human tox, cancer				
Particulate matter				
Photoch. Ozone formation				
Ionizing radiation				
Acidification				
Eutrophication freshwater				
Eutrophication marine				
Eutrophication terrestrial				
Ecotox freshwater				
Land use				
Water scarcity				
Resource use, energy carriers				
Resource use, mineral and metal				

Color key:

> 15% decrease

1% - 15% decrease

1% - 15% increase

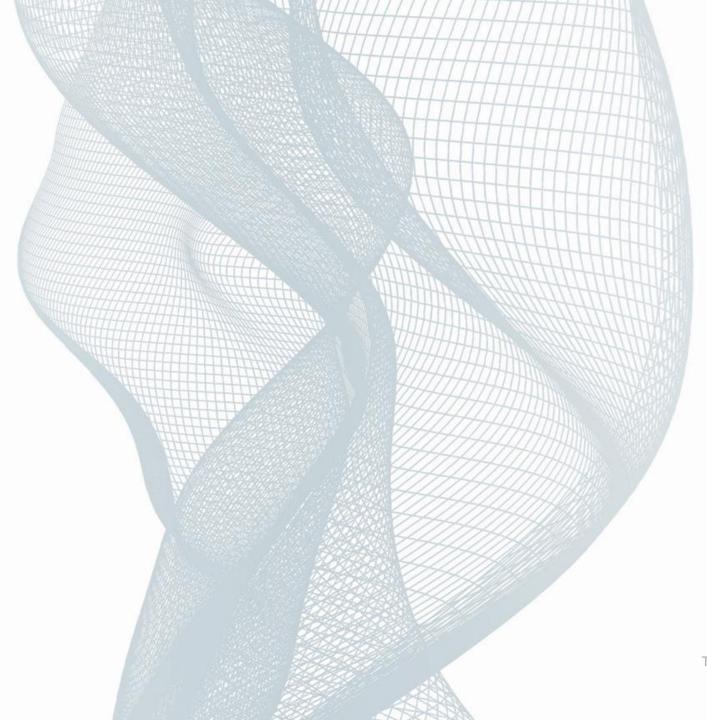
> 15% increase

- A reduction of hazardous substances in recycled materials
 - Reduction of hazardous substances in landfill

The mixing with the virgin regenerated fibre, the final purity of the recycled fibre will reach 90-95%

Increased purity and quality of secondary raw materials

- Our project aims to a 90% removal of chemicals of the finishing


Reduced risk of retaining hazardous substances in recycled materials

process

THANK YOU FOR YOUR ATTENTION

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820869

LIFE CYCLE ASSESSMENT RESULTS

INDICATOR	Unit	FABRIC BASELINE	FABRIC INNOVATION	DIFFERENCE (%)
Climate change	kg CO ₂ eq.	1.05E+01	7.62E+00	-27%
Ozone depletion	kg CFC-11 eq.	6.88E-06	2.55E-08	-99.6%
Human tox, non-cancer	CTUh	9.56E-08	9.65E-08	1%
Human tox, cancer	CTUh	2.22E-09	2.67E-09	20%
Particulate matter	Disease incidences	1.30E-07	1.15E-07	-11%
Photoch. Ozone formation	kg NMVOC eq.	2.27E-02	1.64E-02	-28%
Ionizing radiation	kBq U235 eq.	1.38E+00	2.54E+00	84%
Acidification	mol H+ eq.	2.14E-02	1.59E-02	-26%
Eutrophication freshwater	kg P eq.	2.13E-04	3.30E-04	55%
Eutrophication marine	kg N eq.	8.38E-03	6.28E-03	-25%
Eutrophication terrestrial	mol N eq.	8.42E-02	5.98E-02	-29%
Ecotox freshwater	CTUe	7.80E+01	8.48E+01	9%
Land use	Pt	2.33E+01	1.82E+01	-22%
Water scarcity	m ³ world equiv.	1.42E+00	1.13E+00	-20%
Resource use, energy carriers	MJ	2.17E+02	1.92E+02	-11%
Resource use, mineral and metal	kg Sb eq.	5.78E-06	3.95E-06	-32%