

Grant Agreement N°: 820869 Call: H2020-SC5-2018-2019-2020 Topic: CE-SC5-01-2018 Type of action: RIA

RECYCLING OF WASTE ACRYLIC TEXTILES

D4.3: Report on mechanical recycling of acrylic fibre – Executive summary

Work package	WP 4
Task	Task 4.1
Due date	31/05/2022
Submission date	01/07/2022
Deliverable lead	CETI
Version	0.3
Authors	Mara Poggio
Reviewers	Donatella Macchia, Daniele Piga (Roberto Vannucci)

Abstract	Executive summary
Keywords	Fraying, process, fibres, acrylic

Version	Date	Description of change	List of contributor(s)
V0.1	09/05/2022	Redaction	Mara Poggio (CETI)
V0.2	16/06/2022	Review	Mara Poggio (CETI)
V0.3	01/07/2022	Internal review	Donatella Macchia and Daniele Piga (Centrocot)

Document Revision History

Disclaimer

The information, documentation and figures available in this deliverable, is written by the REACT (Recycling waste acrylic textiles) – project consortium under EC grant agreement 820869 and does not necessarily reflect the views of the European Commission. The European Commission is not liable for any use that may be made of the information contained herein.

Confidential - The information contained in this document and any attachments are confidential. It is governed according to the terms of the project consortium agreement

Copyright notice

© 2019 - 2021 REACT Consortium

Project co-funded by the European Commission in the H2020 Programme						
	Nature of the deliverable:	to specify R				
	Dissemination Level					
PU	Public, fully open, e.g. web		~			
CI	Classified, information as referred to in Commission Decision 2001/844/EC					
СО	Confidential to REACT project and Commiss	sion Services				

Acknowledgment (if needed)

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

OTHER: Software, technical diagram, etc

EXECUTIVE SUMMARY

This deliverable is created in the context of the H2020-funded project REACT (Grant No. 820869) and focuses on frayed trials from awnings waste in acrylic.

The executive summary will provide an overview of the mechanical recycling process on awnings waste in acrylic, which have been conducted during the REACT project. The main objective of this work-package will be to optimize the tearing process in order to obtain spinnable fibres.

CETI (European center for Innovative Textiles) is equipped with a mechanical recycling platform on a pilot scale. The platform is composed of a cutting machine PIERRET and a tearing machine LAROCHE. The expertise and knowledge acquired by the engineer during previous projects will permit to carry out the trial in the best conditions and obtain results that meet the project expectations.

Mechanical recycling is a process based on physical forces, which may be used in isolation for fabric or fiber recycling. However, the main challenge facing this process is to obtain individualized and opened fibers of sufficient length with a minimum amount of short fibers. If these characteristics are fulfilled, it will be possible to up-cycle the awnings waste in acrylic in a new acrylic yarn. Indeed, open-end spinning technology required fibers with a minimum length of 18 mm and small percentage of short fibers.

The solution proposed by CETI is to adjust and optimized for each waste sample the parameters of the tearing machine. This improvement phase will be possible due to laboratory analysis on the length of fibers fulfilled on the classifiable W330A. The CETI will recommendations to optimize the process and achieve the objectives.

The "D4.3: Report on mechanical recycling of acrylic fiber" will highlight the different trials led during the React and the results obtained. Recommendations will be made to optimize the process in order to obtain spinnable fibers on an open-end technology.

To conclude, 13 different packages will be frayed on CETI mechanical recycling platform, with different tearing parameters. At the end, only 6 of them will permit to obtain suitable fibres for the open-end spinning process.

